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VISCOUS HYPERSONIC FLOW PAST A SLENDER CONE /9%

VeSeNikolayev

The hypersonic flow of a perfect gas at zero angle of attack
past a slender cone is calculated, allowing for the trans-
verse curvature of the surface and the interaction of the
boundary layer with the shock wave. The integral relations
of impulse and energy are utilized in calculating the
boundary layer, assuming the profile of the longitudinal com-
ponent of velocity as linear and the temperature profile as
quadratic (but not similar over the length). The pressure
on the external boundary of the boundary layer is determined
by the Newton method, allowing for the thickness of the dis-
placed boundary layer. The surface temperature is assumed
constant (absolutely heat-conducting body) .

1. Formulation of Problem

Consider a flow past a slender cone at zero angle of attack. Assume:
Mo » 1, Mo ® > 1 (where © is the vertex half-angle in radians), C, = const,
Pr = const, Tw = const, i.e., the external flow is hypersonic, the body abso-

lutely heat-conducting, and the gas is perfect.

The equation of laminar boundary flow over the cone, taking account of the
transverse curvature of the surface, has the form

- ap du T ﬂz_
p (4 a§+”on) (o) o
—""—zo,i=1c,,r,p=RpT,

dn
ai 9\ . dp 2 TR T di ou
"(“'a€+"w)—“w v (b )+ wrer et e (o)
5 lpu (r 4 )] + - lpv(r-l— )] = 0.

Here, € is the coordinate along the generatrix of the cone, T the coordi-
nate along the normal to the surface, u, v the velocity components in the di-
rections §, T, and r the local radius of the cone.

Let us determine the pressure on the body by the Newton method. If we take
into account 6%, which is the thickness of the displaced boundary layer, then

the expression for the pressure will read

# Numbers given in the margin indicate pagination in the original forelign text.
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P = pootier(9+ G5 - (1.1)

We note that, under the assumptions adopted, ug = U, while 8% = &,

It is easy to obtain the integral relations of momentum and energy; after
eliminating a number of terms - which the formulation of the problem permits -
these relations take the form:

[
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L ; [20
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s 2
Here, T = i + u®/2.

2. Approximation of the Velocity and Temperature Profiles

Let us take the profile of the longitudinal velocity component as linear,
transverse to the boundary layer:

Tupg Ty - (2.1)
Let us assume the temperature profile as quadratic:

%:f(u-})(w ) (2.2)

[an analogous approximation was used by Pai (Ref.l1)].

In the resultant formula, t depends on €, i.e., there is no similarity of
the temperature profile over the length, while f is the dimensionless tempera-
ture of the wall, f = 2i./u% .

The approximation used for the velocity and temperature profiles 1s un-
satisfactory in the case of a strongly cooled surface. For £ < 1, u and i can-
not be represented at all in the form of simple polynomials in M. Let us try,
for example, to satisfy the equation of influx of heat to the wall:

DBy e B (Y
an (Pr 6n)+Pr(r+n) on T on =0

Let us represent u and i in the form of series:




U=uxlaym/d-+a(n/8)2+ ... { =T[f+ byM/0 + b, (n/8)2 +

Substituting the series for w and i into the equation for the influx of
heat to the wall, we obtain the following expression for f:

fo 0.562

2Pra+2b,+ b0/

An analysis of this formula shows that, at £ < 1, it is impossible for ai,
b1, and bz to be all of the order of unity at the same time.

Thus the approximations adopted for i and u are not satisfactory for £ < 1,

although the use of the integral relations will probably permit some extension
of the range of value of f at which the results of this work can be used.

3. Solution of the System of Eguations

Substituting egs.(2.1), (2.2) and (1.1) into eq.(1.2), we obtain a system
of two second-order differential equations. At € = O the equations have a singu-
larity. Let us perform the substitution:

X = (Poo U B4 E/l‘-w)‘/‘v y=23 (poo uw/uwe 24)‘/"

As a result, we obtain a dimensionless system of differential equations
not containing singularities at x = O:

y{x d [(4y+5x+x—-) y(Ay + Bx):'+6 ( 4y+5x+x—— ) y(Ay+Bx)}
—y? (x+ %) {x‘%‘ (4_1/ -+ 5x xTz—)a—

—2(4y+5x+x—jf—)2}—125 ~ 0.

(3.1a)
U{ rm [(4!/+5x+x )y(LJ+ Mx)]+ [
+5\4J+5x+ X ) y(Ly+Mx)}—l25=O.

(3.1b)

In eq.(3.1), A, B, L and M are functions of t at constant Pr, f and u:

A= ,Tf:—n[—-—tz-i-mn(l + )}

- W_z_“T)[t—tzln(l +T)] ,
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The system of equations (3.1) was solved numerically on an M-20 computer
for several sets of values of f and Pr. For 0 < x < 0.2, the system was solved
by series, since the expressions for the derivatives, as x » 0, are an inde~
terminacy of the form O(Xz)/O(xz). Let us represent y and t in the form of

series:
Y=Y+ y x4 ...+ Ymx?- ...,
t=t, 4+ hLhx+ ...+ tpxm 4 ...

On substituting the series for y and t into eq.(3.1) and equating the co-
efficilents of the various powers of x, we can successively determine all y, and
tn (conventional method of indeterminate coefficients).

The first ten terms of the series were calculated. Taking account of such
a large number of terms of the series 1s necessary to ensure a smooth transition
to the numerical integration at x > 0.2. If the number of terms taken is small,
the solution at x > 0.2 may prove unstable, due to the small errors produced in
solving the series for x < 0.2.

The formulas for determining y. and t, for large m are extremely unwieldy
and cannot be directly programmed. We did, however, succeed in setting up a
general logical scheme for calculating y. and tp by the method of indeterminate
coefficients, without separately programming the calculation of each individual

coefficient.

In the range of 0.2 < x < J,, the system (3.1) was solved numerically by
the Adams method with the interval Ax = 0.0005. As a result we obtained the re-
lation y = y(x), which determines the law of thickness distribution of the
boundary layer along the cone, and also t = t(x).

L. Calculation of Pressure Distribution Coefficients of Frictional Drag and
Heat Transfer

Knowing the relations y = y(x) and t = t(x), we can find the thickness of
the displacement 8% = &, the pressure distribution over the surface of the cone,
the coefficient of frictional drag Cr and the coefficient of heat transfer Cy.

We introduce the quantities Cr and Ci by means of the formulas

X Q,
y Cy= .
Poo oo Too (1 — ) mw ry2

Cr =

qooJ!f?

Here, X i1s the total frictional drag, Qu the total heat flux to the cone



surface, Qo the velocity head, ri the maximum radius of the cone. In variables
X, ¥y & the expressions for 6, p, Cr, Cu are of the form: /12

d=ry/x, p = polilent®(l + 0.2dy/dx + 0.8 y/x)?,

n
206'3_"S # dx 1062 f S(i-—t)x'dx
h ty
[}

nw y > “H T a0pr(l—

Cr =

Here, N is the value of x at § =1,

For comparison, the quantities p, Cr and Cy were also calculated without
allowing for the interaction of the boundary layer with the shock wave. All
other assumptions adopted in the course of this work, however, were retained.
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Figures 1 - 3 show the dependence of the relative quantities p, Cr, and Cu on
the interaction parameter M. The quantities p, Cr, and Cw are the ratios of
the values of p, Cr, and Cu calculated with allowance for the interaction of the
boundary layer with the shock wave, to the corresponding values calculated with-
out such allowance, and characterize the effect of the interaction.

5. Calculation of the Surface Temperature

The families of curves obtained at constant f permit, by the method of suc~
cessive approximations, determining £ itself, i.e., the surface temperature, if
some method of heat removal from the surface of the body is assigned. It is not
difficult to calculate the surface temperature if, for instance, the entire
quantity of heat reaching the body from the gas by means of heat transfer is ex~
pended on radiation, proportional to the fourth power of the surface tempera-
ture. The equation of heat balance reads /13

CiB(IC,)* pechd s

3 == 1—¥F°
el g, ]




Here, 0 is the Stefan-Boltzmann constant, and € is the emissivity of the
surface of the body. Two or three iterations have been shown by calculations to
be sufficient for the process of successive approximation.
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6. Iimits of Applicability of the Method and a Few Conclusions

The above method permits taking account of the influence of interaction of
the boundary layer over a slender cone with the shock wave in the entire range
of interaction for cases of strong and weak interaction, and in the intermedi-
ate region. The fact that the method of calculation with and without allowance
for the interaction is of the same kind permits the assumption that the rela-
tive quantities p, Cr, and Cuy are found more accurately in this work than the
absolute values of the corresponding quantities, whose determination is subject
to the possible influence of a large number of simplifying assumptionse.

Comparisons of the results of calculations without allowance for the inter—
action, with the more accurate calculations of Cr and Cuy have shown discrepan-—
cies as high as 10 - 15% for Cf and 30 - L0% for Cu, in a number of cases (es-
pecially at Pr + 1).

The quantities Cr and Cu, however, may also be determined without allowing
for the interaction; in that case, after calculating the interaction parameter
N, these quantities can be multiplied by the relative values Ce¢, Cw, etc., ob-
tained in this work.

It should also be borne in mind that the boundary-layer equations used in
this work are applicable with an accurary of (6/1)%, whereas the effect of slip-
ping, in the case of Tw = 0(To) when it reaches a maximum is, according to es-
timates, of an order greater than A,/8 = 0(8/t) (Ref.2), where Ay is the mean
free path of the molecules at the wall. This imposes certain restrictions in
using the results of the present work.

The method presented may find application inocalculations of the flow past
slender cones (with a vertex half-angle of 8 < 20°) at low Reynolds numbers in
the range of flight altitudes of H = 50 - 100 km and in low-density wind tunnels.
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